Saturday 25 August 2012

FREE SPACE OPTICS

Imagine an outdoor wireless technology that offers full-duplex Gigabit Ethernet throughput. A technology that can be installed license-free worldwide, and can be installed in less than a day. A technology that offers a fast, high ROI. That technology is Free Space Optics (FSO). This line-of-sight technology approach uses invisible beams of light to provide optical bandwidth connections. It's capable of sending up to 1.25 Gbps of data, voice, and video communications simultaneously through the air — enabling fiber-optic connectivity without requiring physical fiber-optic cable. It enables optical communications at the speed of light. And it forms the basis of a new category of products — optical wireless products from LightPointe, the recognized leader in outdoor wireless bridging communications. This site is intended to provide valuable background and resource information on FSO technology. Whether you're a student, an engineer, account manager, partner, or customer, this site provides the FSO insight you may require. And for providing high-speed connections, across Enterprises and between cell-site towers, it is the best technology available. FSO is a line-of-sight technology that uses invisible beams of light to provide optical bandwidth connections that can send and receive voice, video, and data information. Today, FSO technology — the foundation of LightPointe's optical wireless offerings — has enabled the development of a new category of outdoor wireless products that can transmit voice, data, and video at bandwidths up to 1.25 Gbps. This optical connectivity doesn't require expensive fiber-optic cable or securing spectrum licenses for radio frequency (RF) solutions. FSO technology requires light. The use of light is a simple concept similar to optical transmissions using fiber-optic cables; the only difference is the medium. Light travels through air faster than it does through glass, so it is fair to classify FSO technology as optical communications at the speed of light.

History of Free Space Optics

Originally developed by the military and NASA, FSO has been used for more than three decades in various forms to provide fast communication links in remote locations. LightPointe has extensive experience in this area: its chief scientists were in the labs developing prototype FSO systems in Germany in the late 1960s, even before the advent of fiber-optic cable. To view a copy of the original FSO white paper in German, published in Berlin, Germany, in the journal Nachrichtentechnik, in June 1968 by Dr. Erhard Kube, LightPointe's Chief Scientist and widely regarded as the "father of FSO technology," click on the link below:

While fiber-optic communications gained worldwide acceptance in the telecommunications industry, FSO communications is still considered relatively new. FSO technology enables bandwidth transmission capabilities that are similar to fiber optics, using similar optical transmitters and receivers and even enabling WDM-like technologies to operate through free space. Read more on the ultra high-speed multi-gigabit wireless laser.

How Free Space Optics / Laser Communications Works
FSO technology is surprisingly simple. It's based on connectivity between FSO-based optical wireless units, each consisting of an optical transceiver with a transmitter and a receiver to provide full-duplex (bi-directional) capability. Each optical wireless unit uses an optical source, plus a lens or telescope that transmits light through the atmosphere to another lens receiving the information. At this point, the receiving lens or telescope connects to a high-sensitivity receiver via optical fiber. This FSO technology approach has a number of advantages: Requires no RF spectrum licensing. Is easily upgradeable, and its open interfaces support equipment from a variety of vendors, which helps enterprises and service providers protect their investment in embedded telecommunications infrastructures. Requires no security software upgrades. Is immune to radio frequency interference or saturation. Can be deployed behind windows, eliminating the need for costly rooftop rights.

Choosing Free Space Optics or Radio Frequency Wireless

Speed of fiber — flexibility of wireless

Optical wireless, based on FSO-technology, is an outdoor wireless product category that provides the speed of fiber, with the flexibility of wireless. It enables optical transmission at speeds of up to 1.25 Gbps and, in the future, is capable of speeds of 10 Gbps using WDM. This is not possible with any fixed wireless or RF technology. Optical wireless also eliminates the need to buy expensive spectrum (it requires no FCC or municipal license approvals worldwide), which further distinguishes it from fixed wireless technologies. Moreover, FSO technology’s narrow beam transmission is typically two meters versus 20 meters and more for traditional, even newer radio-based technologies such as millimeter-wave radio. Optical wireless products' similarities with conventional wired optical solutions enable the seamless integration of access networks with optical core networks and helps to realize the vision of an all-optical network.

Free Space Technology in Communication Networks

Free-space optics technology (FSO) has several applications in communications networks, where a connectivity gap exists between two or more points. FSO technology delivers cost-effective optical wireless connectivity and a faster return on investment (ROI) for Enterprises and Mobile Carriers. With the ever-increasing demand for greater bandwidth by Enterprise and Mobile Carrier subscribers comes a critical need for FSO-based products for a balance of throughput, distance and availability.During the last few years, customer deployments of FSO-based products have grown.Here are some of the primary network uses:

Enterprise
Because of the scalability and flexibility of FSO technology, optical wireless products can be deployed in many enterprise applications including building-to-building connectivity, disaster recovery, network redundancy and temporary connectivity for applications such as data, voice and data, video services, medical imaging, CAD and engineering services, and fixed-line carrier bypass.

Mobile Carrier Backhaul
ing services, and fixed-line carrier bypass. Mobile Carrier Backhaul: FSO technology and optical wireless products can be deployed to provide up to 16xE1/T1 backhaul connectivity and Greenfield mobile networks.

Mobile Carrier Base Station “Hoteling”
FSO-based products can be used to expand Mobile Carrier Network footprints through base station “hoteling” in tandem with ADC’s Digivance™ solution.

No comments:

Post a Comment